Computable Optimal Value Bounds for Generalized Convex Programs
نویسندگان
چکیده
It has been shown by Fiacco that convexity or concavity of the optimal value of a parametric nonlinear programming problem can readily be exploited to calculate global parametric upper and lower bounds on the optimal value function. The approach is attractive because it involves manipulation of information normally required to characterize solution optimality. We briefly describe a procedure for calculating and improving the bounds as well as its extensions to generalized convex and concave functions. Several areas of applications are also indicated.
منابع مشابه
Relative Entropy Relaxations for Signomial Optimization
Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of...
متن کاملOptimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means
We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)
متن کاملA Note on Error Bounds For1 Convex and Nonconvex Programs
Given a single feasible solution xF and a single infeasible solution xI of a mathematical program, we provide an upper bound to the optimal dual value. We assume that xF satisfies a weakened form of the Slater condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian [Man97] on the distance of a ...
متن کاملA Note on Error Bounds for Convex and Nonconvex Programs
Given a single feasible solution xF and a single infeasible solution xI of a mathematical program, we provide an upper bound to the optimal dual value. We assume that xF satisfies a weakened form of the Slater condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian [11] on the distance of a poi...
متن کاملApproximation and contamination bounds for probabilistic programs
Development of applicable robustness results for stochastic programs with probabilistic constraints is a demanding task. In this paper we follow the relatively simple ideas of output analysis based on the contamination technique and focus on construction of computable global bounds for the optimal value function. Dependence of the set of feasible solutions on the probability distribution rules ...
متن کامل